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Abstract

While Multimodal Large Language Models (MLLMs) have
exhibited remarkable general intelligence across diverse
domains, their potential in low-altitude applications domi-
nated by Unmanned Aerial Vehicles (UAVs) remains largely
underexplored. Existing MLLM benchmarks rarely cover
the unique challenges of low-altitude scenarios, while UAV-
related evaluations mainly focus on specific tasks such as
localization or navigation, without a unified evaluation of
MLLMs’ general intelligence. To bridge this gap, we present
MM-UAVBENCH, a comprehensive benchmark that sys-
tematically evaluates MLLMs across three core capability
dimensions—perception, cognition, and planning—in low-
altitude UAV scenarios. MM-UAVBENCH comprises 19
sub-tasks with over 5.7K manually annotated questions, all
derived from real-world UAV data collected from public
datasets. Extensive experiments on 16 open-source and pro-
prietary MLLMs reveal that current models struggle to adapt
to the complex visual and cognitive demands of low-altitude
scenarios. Our analyses further uncover critical bottlenecks
such as spatial bias and multi-view understanding that hin-
der the effective deployment of MLLMs in UAV scenarios.
We hope MM-UAVBENCH will foster future research on
robust and reliable MLLMs for real-world UAV intelligence.

1. Introduction
With the rapid progress of Multimodal Large Language Mod-
els (MLLMs), their capabilities have become increasingly
comprehensive [1, 39, 42]. Such integrated intelligence is
especially appealing for Unmanned Aerial Vehicles (UAVs),
which are evolving from passive sensing platforms into au-
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tonomous edge agents in complex low-altitude environments.
Integrating MLLMs into UAVs can elevate their intelligence
from basic perception-such as object detection [28] and track-
ing [46]—to cognitive reasoning and task planning, marking
a key step toward autonomous aerial intelligence in real-
world missions.

Despite this potential, the fundamental abilities of
MLLMs to operate or assist in complex low-altitude envi-
ronments remain largely unevaluated. Most existing bench-
marks for evaluating MLLMs focus on general image or
video understanding in everyday scenes [9, 10, 15, 32],
emphasizing static perception from ground-level or object-
centric views. Even when low-altitude imagery occasion-
ally appears in these datasets [32], it is not treated as a
distinct evaluation domain. Meanwhile, several remote sens-
ing benchmarks [5, 18, 31] assess MLLMs from satellite
or aerial perspectives, but they mainly involve high-altitude
top-down views with stable geometry and coarse spatial
resolution. Consequently, none of these datasets capture
the dynamic, near-ground, and multi-agent characteristics
inherent to low-altitude UAV scenarios.

Recently, several studies have begun to investigate the ap-
plicability of MLLMs in UAV-related scenarios [2, 6, 17, 22,
28, 41]. However, most of these efforts primarily focus on
traditional perception tasks such as object detection [2, 6, 43],
referring grounding [28], counting [11, 35] and target track-
ing [24]. Another line of evaluation focuses on navigation
and control-oriented tasks, including trajectory following
and path planning for UAVs [34, 37, 41], aiming to assess
models’ low-level motion understanding or decision execu-
tion. Although these benchmarks contribute to evaluating
UAV perception and navigation, they remain task-specific
and lack a comprehensive assessment of MLLMs’ higher-
level abilities in realistic low-altitude environments.

In realistic UAV operations, intelligence involves more
than recognizing objects or following trajectories—it de-
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PlanningCognitionPerception

•What is the motion direction of the 
brown car in the red box area relative to 
its own orientation?
✔ Turning right ✘ Turning left

Orientation Classification

•What are the lighting and weather 
conditions in this image?
✔ nighttime and clear
✘ daytime and sunny

Environment State Classification

•What is the exact text on the store sign in 
poor lighting conditions?

✔ JRCB金昌农商银行
✘ JNCB金昌農商銀行

Urban OCR

•What is the primary type of scene in the 
red box area?

✘ Hospital   
✔ School 

Scene Classification

• Please count the number of the corn 
tassels in the image.
✘ 66   
✔ 51

Class Agnostic Counting

• Based on the two aerial views, What 
will the vehicle in the red box do next?
✘ Probably go straight or turn right
✔ Probably go straight or stop and wait

Intent Analysis and Prediction

✘ The overall traffic flow will remain unchanged. 
✔ The overall traffic flow will increase slightly. 

Scene Analysis and Prediction
• Predict the possible changes that this circular 

road may undergo in the coming period.

✘ Used for residing and living.
✔ Used for conducting commercial office work.

Scene Attribute Understanding
•What is the function of the scene shown 

in the middle of the image?

✔ Several cars were racing on the snowy ground.
✘ The order of the cars hasn't changed on the ground.

Event Understanding
•What can be observed happening in the video?

✘ Only several audiences will attend this concert
✔ There might be a large number of spectators entering 

the concert venue..

•What may happen at this concert shown in the video?
Event Prediction

Temporal Ordering
•Which of the following images is arranged in 

order correctly?

✔ 1-4-3-2
✘ 2-1-4-3

✘ The match has entered a critical stage, and the players 
are actively moving according to the strategy.
✔ The players are doing movement training on the field   
to warm up.

•What is the reason for the baseball player in this 
video to be moving?

Event Tracing

•What are the two people within the 
red box area doing in the picture?

✘ conflict
✔ kiss and embrace

Cross-Object Reasoning

✘ 3-2-1   
✔ 2-3-1

Scene Damage Assessment
•How to rank the severity of damage across       

the three scenes (from severe to mild)?

• The UAV from the perspective of Figure 2 is the main 
command angle, while the perspectives of Figure 1 and 
Figure 3 are the second and third angles, respectively. 
The first perspective drone has exited tracking due to 
low battery. In order to maintain the original plan for 
tracking, which area should a new drone be added in?

Swarm Collaborative Planning

✘ Region A                ✘ Region                ✔ Region C

•Due to the heavy flood, the rescue team needs to reach 
the five locations A, B, C, D and E for rescue. The 
rescue priority levels at the locations are as follows: 
A:high, B:medium, C:high, D:low, E:high. Please plan 
the most reasonable rescue route.

✘ C→A→E→B→D
✔ E→C→A→B→D

Ground-Target Planning

•A marathon is in progress. If one of Vehicles A or B 
should follow runners A and B to provide logistical 
support while the other waits for the main group behind, 
how should their tasks be assigned ? How should the 
drone ensure both A and B are observed simultaneously?

✔ Vehicle B takes on the tracking task, while Vehicle A stops    
to wait for the main group behind. The drone maintains its 
trajectory, flies backward, and gradually increases altitude.

Air-Ground Collaborative Planning

•Was the toy car in motion before 
this moment?
✘ Cannot infer    ✘ No    ✔ Yes  

Target Backtracking

• Please count the number of the white 
cars in the parking lot.

✘ 32   
✔ 35   

Referring Expression Counting

• Based on the two aerial views, What
will the vehicle in the red box do?
✘ Probably go straight or turn right.
✔ Probably go straight or stop and wait.

Object-level Scene-level Event-level
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✘ Vehicle A overtakes Vehicle B and takes on the tracking task, 
while Vehicle B waits for the main group behind. The drone 
maintains its trajectory, flies backward, and gradually 
increases altitude.

Figure 1. Overview of MM-UAVBENCH. MM-UAVBENCH consists of 19 tasks covering three core capability dimensions: Perception,
Cognition, and Planning. Perception tasks assess basic visual understanding such as classification, OCR, and counting. Cognition tasks span
three hierarchical levels—object-level, scene-level, and event-level—evaluating the model’s ability to infer intentions, reason across objects,
analyze scenes, understand events, and predict outcomes. Planning tasks assess UAV-specific decision making, including planning for single
or multi-UAV systems, directing ground-target actions from an aerial perspective, and coordinating cooperative actions between aerial agents
and ground participants. All examples shown are real UAV imagery, illustrating the diverse challenges present in low-altitude scenarios.

mands understanding what is happening within a scene, how
multiple entities (including UAVs and ground targets) in-
teract, and what strategic decisions should follow [30]. A
systematic evaluation benchmark is needed to measure
how well MLLMs see, think, and plan in complex real-
world UAV scenarios.

In this work, we introduce MM-UAVBENCH, a com-
prehensive benchmark designed to evaluate the perception,
cognition, and planning abilities of MLLMs in low-altitude
UAV scenarios. MM-UAVBENCH provides a unified eval-
uation paradigm that reflects the hierarchical intelligence
required for real-world aerial missions. It features three
main characteristics:
• Comprehensive Task Design. MM-UAVBENCH in-

cludes 19 tasks across three key capability dimensions
and incorporates UAV-specific considerations, including
multi-level cognition (object, scene, and event) and plan-
ning that involves both aerial and ground agents, resulting
in a comprehensive task design.

• Diverse Real-World Scenarios. Unlike previous bench-
marks that focus on limited scenes or rely on simulated
environments, MM-UAVBENCH is constructed from real

UAV imagery collected across a wide range of scenar-
ios, including but not limited to urban areas, agricultural
fields, wildlife habitats, and emergency or disaster zones,
enabling robust and generalizable evaluation.

• High-quality Human Annotations. All tasks are manu-
ally annotated to ensure both labeling quality and appropri-
ate task difficulty. In addition, we provide multiple forms
of detailed auxiliary annotations, such as bounding boxes
for key entities, to support in-depth capability analysis.
To construct this benchmark, we collect real-world UAV

videos and images from diverse data sources, encompassing
1549 video clips and 2873 images with an average resolution
of 1622× 1033. Using these data, we manually annotate 16
tasks, while the remaining 3 tasks are generated through rule-
based transformation of manually annotated labels, resulting
in 5702 multiple-choice QA annotations in total. We eval-
uate a broad set of MLLMs on MM-UAVBENCH and find
that their perception capabilities in UAV scenarios remain
limited, with even more pronounced deficiencies in cognition
and planning tasks. Further analyses on object-scale sensi-
tivity, spatial perception bias, multi-view understanding, and
egocentric planning indicate that current MLLMs struggle to



Table 1. Overview of MM-UAVBENCH and comparison with representative existing benchmarks. ¥, q, and ✓✗respectively denote datasets
constructed from real imagery, purely simulation, or partially real data that include simulated components. The “Anno.” column specifies
the annotation method of each benchmark, including Human (purely human-labeled), Auto (fully automatic generation), and Semi-Auto
(generated labels with human refinement). Scenario icons: r Urban, � Natural scenes, t Wildlife, . Disaster/Emergency, 
 Agriculture.

Benchmark Capability Types #Tasks Scenarios Real Imagery Anno. #Source #Test Instances
Remote Sensing Perspective

VRSBench [18] Perception / Cognition 31 – ¥ Semi-Auto 29.6K images 205.3K
XLRS-Bench [31] Perception / Cognition 16 – ¥ Semi-Auto 1.4K images 45.9K

UAV Perspective
UAVDT [6] Object Detection and Tracking 3 r ¥ Human 80K images 841.5K
RefDrone [28] Visual Grounding 1 r ¥ Semi-Auto 8.5K images 63.6K
UAV-Human [17] Human Behavior Understanding 4 r ¥ Human 67.4K videos 86.0K
UAV-ON [37] Visual-Language Navigation 1 r � q Auto 1.2K targets 1.2K
OpenUAV [34] Visual-Language Navigation 1 r � q Auto 12.1K trajectories 12.1K
MME-RealWorld-MO [19] High-resolution Understanding 6 r ¥ Human 1.6K images 2.2K
SkyAgent-Eval [38] Embodied Capability 5 r q Human 67.4K videos 86.0K
UrbanVideo-Bench [41] Embodied Capability 16 r ✓✗ Semi-Auto 1.5K videos 5.2K
MM-UAVBENCH (Ours) Comprehensive Per. / Cog. / Plan. 19 r �t. 
 ¥ Human 1.5K videos + 2.8K images 5.7K

adapt to low-altitude UAV challenges, underscoring the need
for UAV-tailored model designs for practical deployment.
Our main contributions are summarized as follows:
• We present MM-UAVBENCH, a new and comprehensive

benchmark for evaluating the perception, cognition, and
planning capabilities of MLLMs across 19 tasks in low-
altitude UAV scenarios.

• We construct MM-UAVBENCH from real-world UAV
datasets with both manually annotated and rule-converted
tasks, resulting in 5702 high-quality annotations that pro-
vide strong data authenticity and well-controlled task diffi-
culty.

• We benchmark a series of MLLMs on MM-UAVBENCH
and provide detailed analyses that expose critical limi-
tations, highlighting the need for UAV-oriented MLLM
designs for real-world deployment.

2. Related Work

2.1. General MLLM Benchmark

A wide range of benchmarks have been developed to evalu-
ate the visual and reasoning abilities of MLLMs. General-
purpose benchmarks such as MME [9], SEED-Bench [15],
and VideoMME [10] offer broad assessments of object recog-
nition, commonsense reasoning, and video understanding
across everyday scenes. Recently, several works have also
explored comprehensive MLLM evaluation in remote sens-
ing, including VRSBench [18] and XLRS-Bench [31], but
these operate primarily on high-altitude, top-down imagery
with stable viewpoints. Despite their breadth, they do not
address the distinct characteristics of low-altitude UAV sce-
narios, such as dynamic viewpoints, large scale variation,
multi-entity interactions, and action-oriented decision mak-
ing, and thus provide limited insight into the operational
intelligence required for UAV missions.

2.2. Evaluation in Low-Altitude UAV Scenarios

Existing benchmarks for UAV scenarios mainly cover nar-
row and task-specific capabilities. Many perception-oriented
datasets such as UAVDT [6] and RefDrone [28] focus on
detection, tracking, or grounding in limited urban scenes.
A second line of work, such as UAV-ON [37] and Open-
UAV [34], evaluates visual-language navigation in simula-
tor environments. Although these benchmarks introduce
decision-oriented tasks, they rely heavily on synthetic scenes
and address only ego-centric navigation. More recent em-
bodied UAV evaluations, such as SkyAgent-Eval [38] and
UrbanVideo-Bench [41], examine how MLLMs can assist
UAVs in scene perception and flight planning. However, they
still lack comprehensive assessments of UAV-perspective
scene and event understanding, and their heavy reliance
on simulator-generated data introduces potential sim-to-real
gaps. Overall, existing UAV benchmarks offer limited ca-
pability coverage and restricted scenario diversity, provid-
ing only a partial view of the intelligence required for low-
altitude UAV operations. In contrast, MM-UAVBENCH
jointly evaluates perception, multi-level cognition, and multi-
agent planning across diverse real-world UAV scenarios. A
detailed comparison is provided in Table 1.

3. MM-UAVBENCH

In this section, we first introduce the hierarchical task de-
sign of MM-UAVBENCH. It spans 3 L1 catigories, 8 sub-
catigories, and 19 fine-grained tasks that are specifically
tailored for UAV scenarios, as shown in Fig 2. Next, we
describe the data collection process, question annotation
procedures, and quality control guidelines, which greatly
enhances the dataset’s reliability and difficulty. Finally, we
present a statistical overview of MM-UAVBENCH.



Figure 2. The task design of MM-UAVBENCH covers 3 high-
level categories, 8 sub-catigories and 19 fine-grained tasks in MM-
UAVBENCH.

3.1. Hierarchical Task Design
The diverse tasks in MM-UAVBENCH are carefully de-
signed to comprehensively evaluate the capabilities of
MLLMs, with each task associated with both L1 and L2
categories representing different levels of ability. The de-
tailed definitions of each task under L2-level are listed in
Appendix.

Perception. This dimension consists of three sub-
categories: classification, OCR, and counting. 1) Classi-
fication. Identifying the category of objects or scenes in
images. In UAV scenarios, such tasks include recognizing
land-cover types (e.g., roads, buildings, farmlands) and trans-
portation vehicles (e.g., cars, ships, airplanes). In particular,
we annotate a large number of vehicle orientation classifica-
tion tasks, which are crucial for road safety monitoring and
trajectory prediction. 2) OCR (Optical Character Recog-
nition). Recognizing textual and symbolic information in
images, mainly focusing on extracting information from road
signs, markings, and traffic signals, which can support navi-
gation and traffic management. 3) Counting. Estimating the
number of objects such as vehicles, people, or animals. In
UAV scenarios, counting is valuable for traffic flow analysis,
crowd density monitoring, and wild animal protection.

Cognition. Based on the reasoning target, cognition can
be categorized into object-level, scene-level, and event-level
reasoning. 1) Object-level. Reasoning about the positions
and behaviors of single or multiple target objects across
past, present, and future spatial-temporal sequences, which

supports the analysis of object trajectories, behavioral pat-
terns, and anomalies. 2) Scene-level. This includes three
tasks: scene attribute understanding, scene damage assess-
ment (e.g., fire, flood), and scene flow prediction, aimed
at understanding the overall environmental state and its dy-
namic changes. 3) Event-level. Reasoning about the causes,
content, prediction, and temporal order of events, which
helps UAVs identify events and anticipate their trends.

Planning. Based on the planning entities, planning
can be categorized into two types: UAV-to-UAV planning
and UAV-to-ground planning(including collaborative) plan-
ning.1) UAV-to-UAV level. For a small UAV group (e.g.,
three UAVs) executing joint missions, planning is conducted
from two perspectives: task allocation and fault tolerance.
Task allocation is based on the perspective of the UAV with
the most comprehensive information (the command UAV),
assigning roles and paths to each UAV to optimize overall
group efficiency. Fault tolerance ensures that the group can
still accomplish its mission even if individual UAVs fail or
are disrupted. This capability is critical for tasks such as
multi-UAV cooperative tracking, inspection, and search oper-
ations. 2) UAV-to-Ground level. This level covers Ground-
Target Planning and Air–Ground Collaborative Planning,
where UAVs guide the movements of ground agents (e.g.,
rescue teams or vehicles) as well as their own trajectories
based on environmental conditions and mission objectives,
thereby enabling effective coordination between aerial and
ground systems.

3.2. Dataset Construction

The curation of MM-UAVBENCH can be divided into three
main components. First, we collect a large and diverse set
of real UAV scenarios. Second, we adopt two annotation
pipelines, manual labeling and rule-based conversion from
existing datasets, while following a set of principles to ensure
data quality. Finally, statistical analysis demonstrates the
diversity and comprehensiveness of our benchmark.

3.2.1. Data Collection
We collect open-source datasets and conduct re-annotation
to construct MM-UAVBENCH. The statistics of annotated
datasets for each task are summarized in Appendix. These
datasets not only encompass diverse environments such as
urban and wilderness settings but also cover extreme scenar-
ios including natural disasters (e.g., floods, wildfires) and
human-induced incidents (e.g., violent events, traffic acci-
dents). Moreover, they exhibit substantial diversity across
temporal dimensions (day/night, seasonal variations, weather
conditions) and geographical dimensions (countries, land-
scapes). The raw datasets we select follow two main cri-
teria: 1. Data is collected by UAVs in the real world; 2.
The datasets contain rich annotation which is beneficial for
multiple-choice question generation. For video datasets, we
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(a) Tasks distribution.

(b) Input modality.

Metric Value
Nvideo 1549
Nimg 2873
Avg. Res. 1622×1033
Nbbox,man 1267
Nbbox, obj 2560
Nbbox, reg 3669
Avg. Sman 0.2%
Avg. Sobj 0.7%
Avg. Sreg 4.5%

(c) Annotation metrics.

Figure 3. Statistics of MM-UAVBENCH.(a) Distribution of the
19 sub-tasks. (b) Proportions of the three input modalities. (c)
Annotation metrics, where Nvideo and Nimg denote the numbers of
video clips and images; Avg. Res. denotes the average resolution;
Nbbox,man, Nbbox, obj, and Nbbox, reg denote the numbers of hu-
man, object, and region bounding boxes; Avg. Sman, Avg. Sobj, and
Avg. Sreg represent their average area ratios.

uniformly downsample frames to 12 fps, which both simpli-
fies manual annotation and aligns with mainstream practices
in MLLM-based video processing.

3.2.2. Question-Answer Annotation
We adopt two approaches to construct MM-UAVBENCH:
(1) direct human annotation, and (2) rule-based transfor-
mation from existing datasets. The detailed construction
procedures for all 19 tasks are provided in the Appendix.

Human Annotation. For most tasks, annotators are pro-
vided with predefined task templates and annotate accord-
ing to appropriate data sources (see Appendix for details).
However, for perception-oriented tasks, relying solely on
“templates + annotator judgment” is insufficient to control
task difficulty. For example, in scene classification, MLLMs
may already achieve high accuracy because similar scenes
commonly appear in their pretraining corpora.

To address this, we first employ Qwen2.5-VL-72B to syn-
thesize scene classification questions, deliberately increasing
task difficulty by enriching the options with fine-grained

details. Next, we use Qwen2.5-VL-7B and Qwen2.5-VL-
72B answer these synthesized questions and select the cases
where the two models disagree to human annotators. This
way raises task difficulty from the data perspective. Further-
more, for tasks where options themselves are complex (e.g.,
the planning tasks where options may correspond to tex-
tual descriptions of distinct routes), we leverage MLLMs to
expand the options, enhancing the plausibility of distractors.

Transfer from existing datasets. For datasets involving
anomaly events and natural disasters, the original annotations
usually contain rich semantic and structural information. We
first apply rule-based methods to automatically synthesize
multiple-choice questions for counting tasks and scene dam-
age assessment. After expert verification, the questions are
further refined by MLLMs to fit our task design.

3.2.3. Quality Control

The quality control of MM-UAVBENCH consists of two key
aspects: (1) Annotation Accuracy Control, which ensures
the consistency and reliability of annotations; and (2) Task
Difficulty Control, which maintains a reasonable challenge
level for both humans and models.

For annotation accuracy control, all tasks in MM-
UAVBENCH originate from human annotations. Even for
tasks adapted from existing datasets, we only retain samples
that have been manually annotated or verified. Each sam-
ple is cross-checked by at least two professional researchers
to ensure correctness and reduce annotation bias. Given
the complexity of UAV scenes and task instructions, anno-
tators may still disagree on certain samples. To mitigate
this, domain experts developed detailed annotation guide-
lines grounded in scene semantics and the functional roles
of UAVs. For factual tasks (i.e., tasks involving events that
objectively occur in the video), we further standardize the
answering viewpoint. For example, in orientation or road-
related descriptions, the annotation protocol explicitly speci-
fies whether the reference frame is the UAV itself or a ground
agent. This is essential as prior work shows that MLLMs of-
ten produce inconsistent results across different viewpoints
of the same question [27].

For task difficulty control, we adjust the challenge level
through systematic distractor design. In factual tasks, distrac-
tors are selected from objects that co-occur with the target
in keyframes or share similar appearances and states, typ-
ically occupying less than 10%—and in most cases under
1%—of the image area. In hypothetical tasks, large models
are employed to assist human annotators, but the generated
distractors often lack discriminative strength. To mitigate
this, we strictly control the granularity of answers and dis-
tractors during annotation and review, ensuring they focus
on clearly distinguishable factors such as direction, angle, or
object choice (e.g., the distinction between Option A and B),
thereby maintaining task discriminability and validity.



Table 2. Experimental results on MM-UAVBENCH. Dark Orange indicates the best result among all models and light Orange indicates
the best result among open-source models. ‡: We conduct human evaluation on a randomly chosen 10% subset of the questions from each
task.
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Methods Rank Avg. Perception Cognition Planning

Baseline

Random - 25.38 25.00 25.00 25.00 25.00 20.00 20.00 26.48 28.15 25.00 32.55 25.00 25.00 24.73 25.00 24.40 25.00 28.07 25.00 22.91

Human‡ - 80.39 82.61 81.94 81.62 76.67 42.42 29.41 77.50 94.12 88.72 89.78 87.80 87.50 82.61 96.67 100.00 81.78 85.71 78.26 82.35

API-based

Gemini 2.5 Pro 1 54.59 74.90 37.89 73.78 82.19 23.94 24.86 51.69 48.26 50.00 84.12 44.57 57.00 73.25 73.09 68.02 51.14 25.68 44.19 48.56

Gemini 2.5 Flash 2 47.44 70.71 41.00 68.30 75.94 24.55 32.86 38.98 52.91 20.97 83.39 46.86 41.55 70.78 69.44 66.40 21.14 15.54 39.94 20.19

GPT-4o 3 44.92 57.32 38.43 68.01 62.19 22.12 18.86 14.41 25.58 50.00 83.39 31.71 40.10 67.08 64.78 63.16 33.71 28.38 39.09 45.19

Open-source

Qwen3-VL-8B 6 50.98 69.87 26.52 71.76 79.69 38.79 18.57 50.00 57.56 58.18 85.56 34.00 53.14 58.44 62.46 61.54 30.00 27.12 45.61 39.90

Qwen3-VL-32B 1 55.40 68.62 41.81 75.22 76.56 45.45 26.57 42.37 54.07 50.32 87.36 40.00 64.25 64.61 69.77 71.66 42.00 37.63 50.14 44.23

Qwen3-VL-235B-A22B 2 55.07 69.04 41.14 75.79 73.44 47.27 26.00 43.22 51.74 51.94 86.28 39.43 58.45 69.96 72.43 68.42 40.57 33.45 46.74 50.96

Qwen2.5-VL-7B 7 49.64 68.62 31.12 67.72 70.31 30.00 27.71 50.00 51.16 51.94 87.73 29.71 51.21 53.91 57.81 60.73 35.43 27.12 49.01 41.83

Qwen2.5-VL-32B 5 52.02 66.95 29.63 68.88 76.56 48.79 19.14 36.44 47.67 52.90 89.53 40.29 64.25 66.67 61.13 59.11 39.43 23.73 51.56 45.67

Qwen2.5-VL-72B 3 54.62 70.29 34.78 71.76 75.62 35.45 24.29 38.14 50.58 57.74 89.17 25.14 64.25 71.60 66.45 72.87 56.12 35.25 50.71 47.60

InternVL3.5-8B 9 47.13 58.16 27.06 72.62 68.12 36.36 17.71 34.75 48.84 36.77 88.09 34.00 49.28 54.73 56.26 60.73 34.57 40.68 39.66 37.02

InternVL3.5-38B 13 43.45 46.86 22.33 55.04 66.56 49.09 18.29 27.97 29.65 47.62 63.18 24.57 52.17 67.08 59.47 63.56 35.14 32.54 24.08 40.38

InternVL3-14B 10 46.86 66.53 18.40 72.05 73.75 32.42 16.29 41.53 54.07 33.87 86.28 42.00 56.52 58.44 47.84 54.25 35.71 29.49 36.26 34.62

InternVL3-78B 4 53.56 72.80 52.23 66.86 58.44 45.45 16.00 50.00 45.93 40.65 88.09 48.86 59.42 73.25 69.77 69.64 40.86 38.64 46.18 34.62

LLaVA-OneVision-7B 12 43.83 62.76 18.13 69.74 65.94 25.15 24.29 40.68 48.84 42.26 55.60 27.71 31.88 64.20 55.81 55.47 28.86 27.46 41.36 46.63

MiniCPM-V-4.5-8B 8 47.70 63.18 36.27 72.05 72.50 38.79 27.14 38.14 44.77 48.06 56.68 34.57 38.16 60.49 60.80 56.28 33.14 39.32 42.78 43.27

MiMo-VL-7B-RL 11 44.33 67.36 24.22 68.88 70.62 16.97 31.43 43.22 32.56 48.06 84.48 29.14 54.11 40.74 39.20 36.84 40.00 23.73 48.44 42.31

3.3. Diversity Statistics
The statistical overview of MM-UAVBENCH is presented
in Figure 3. MM-UAVBENCH consists of 19 sub-tasks
with a total of 5702 QA pairs. Among them, 82% are man-
ually annotated, while the remaining 18% are converted
from publicly available datasets that were originally human-
annotated. The benchmark covers three input modalities:
single images, key frames, and videos, their distribution is
shown in Figure 3b. In total, the annotated data span 1549
video clips and 2873 images, with an average resolution of
1622×1033. The maximum resolution reaches 5472×3648.
We overall annotate 7496 bounding boxes across three cate-
gories—regions, objects, and humans—whose average areas
account for 4.5%, 0.7%, and 0.2% of the corresponding
input frame, respectively. Taken together, these statistics
demonstrate that MM-UAVBENCH poses a comprehensive
and challenging evaluation for MLLMs across diverse tasks,
and real-world complexities.

4. Experiment
4.1. Settings
Metrics. All questions in MM-UAVBENCH are designed in
a multiple-choice format. We report accuracy as the primary
evaluation metric. Each model is evaluated three times, and

the average accuracy is taken as the final score for each task.
For reproducibility, we use a greedy decoding configuration
with top p = 1.0, temperature = 0.0, and num beams = 3.

Baselines. We select representative proprietary and open-
source MLLMs as our baseline models. For the proprietary
category, we include state-of-the-art models such as GPT-
4o [12], Gemini 2.5 Pro and Gemini 2.5 Flash [3]. For the
open-source category, we adopt Qwen3-VL and Qwen2.5-
VL series [1], InternVL3.5 and InternVL3 series [33, 42],
MiniCPM-V 4.5 [39, 40], LLaVA-OneVision-7B [16] and
MiMo-VL-7B-RL [29]. More details of the evaluation are
provided in Appendix.

4.2. Quantitative Results
The quantitative result is shown in Tab. 2. We rank the
performance of all evaluated MLLMs and highlight the best
scores in color. The main conclusions are summarized as
follows:
• Limited adaptability of current MLLMs to UAV sce-

narios. While human evaluators achieve 80.4% average
accuracy on our benchmark, existing MLLMs still struggle
to adapt effectively to low-alititude UAV tasks. Notably,
human performance achieve high scores on cognition and
planning tasks, ranging from 78% to 100%, however ex-
cept one task in cognition, the best scores of MLLMs
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Figure 4. Accuracy comparison across small, medium, and large
target sizes on Orient. Classification and Target Backtracking tasks.

ranging from 40% to 73%. Among all models, Gemini 2.5
Pro achieves the best overall performance, while Qwen3-
VL-32B ranks highest among open-source models.

• Proprietary and open-source MLLMs perform compa-
rably. Our results show that the performance gap between
proprietary and open-source MLLMs is not significant.
For example, the overall performance of Gemini 2.5 Flash
and GPT-4o is around the median among open-source
models. This suggests that the challenges posed by UAV
scenarios are a general issue for current MLLMs, regard-
less of whether they are proprietary or open-source.

• Model size influences performance. We observe a clear
trend that models with larger parameter scales tend to
achieve higher accuracy, whereas smaller models generally
perform worse. This finding highlights a potential trade-
off between performance and deployability for MLLMs in
low-altitude UAV scenarios.

4.3. Influence of Object Scale

We further analyze how object scale affects model perfor-
mance. For the two tasks with annotated target bound-
ing boxes—Orientation Classification and Target Back-
tracking—we group all questions into three subsets (Small,
Medium, Large) based on the size of the referenced target.
We then compute the accuracy for each subset, as summa-
rized in Figure 4. Overall, accuracy tends to improve from
small to large targets across models, indicating that current
MLLMs struggle when the object occupies only a small por-
tion of the field of view. This trend highlights object scale as
a key factor shaping model performance in UAV scenarios.

(a) Qwen2.5VL-72B (d) InternVL3-78B

(b) Qwen2.5VL-32B (e) GPT4o

(c) Qwen2.5VL-7B (f) MiniCPM-V-4.5

Figure 5. Confusion matrices of predicted (P.) directions from
MLLMs versus ground-truth (T.) on the Orient. Classification task.

4.4. Spatial Prediction Bias in MLLMs

We randomly sample 100 instances from each of the four ori-
entation categories in the Orientation Classification task and
compare the model predictions with the ground-truth labels.
As shown in Fig. 5, the confusion matrices reveal strong
model-dependent biases in orientation prediction. Qwen2.5-
VL-72B almost never predicts left or right turns, whereas
Qwen2.5-VL-32B and Qwen2.5-VL-7B tend to favor turning
left and going straight, respectively. Other models exhibit
similarly skewed behaviors. This highlights the difficulty
current MLLMs face in extracting reliable motion cues from
UAV perspectives.

4.5. Challenges in Multi-View Understanding

We further decompose the multi-view Intent Analysis and
Prediction task into its single-view counterparts to assess
whether current MLLMs can effectively leverage comple-
mentary cross-view information. Specifically, for each multi-
view sample, we evaluate the model independently on each
available view to obtain its single-view performance. As
shown in Table 3, multi-view performance for most models



Table 3. Accuracy of different MLLMs under single-view (Aerial,
Ground) and multi-view settings on the Intent Analysis and Pre-
diction task. We additionally report the performance gap between
multi-view and the best single view in each group (∆).

Model Aerial & Ground Views Aerial Multi-Views

Aerial Ground Both ∆ View1 View2 Both ∆

GPT-4o 44.12 61.76 57.35 -4.41 45.29 50.36 49.09 -1.27

Qwen3-VL-235B 52.94 55.88 47.06 -8.82 54.35 55.07 52.54 -2.53

Qwen3-VL-32B 67.65 52.94 61.76 -5.89 51.09 48.91 48.91 -2.18

Qwen2.5-VL-7B 61.76 64.71 70.59 +5.88 48.91 48.91 49.64 +0.73

Qwen2.5-VL-72B 76.47 79.41 55.88 -23.53 35.14 35.51 57.97 +22.46

InternVL3.5-8B 44.12 38.24 38.24 -5.88 36.59 36.96 36.59 -0.37

InternVL3.5-38B 35.29 32.35 35.29 0.00 42.03 45.29 42.75 -2.54

InternVL3-78B 44.12 41.18 44.12 0.00 44.57 41.67 40.22 -4.35

MiniCPM-V-4.5 52.94 61.76 52.94 -8.82 54.35 51.81 51.45 -2.90

MiMo-VL-7B-RL 64.71 64.71 55.88 -8.83 47.83 49.28 47.10 -2.18

Table 4. Performance comparison between egocentric and exocen-
tric planning, obtained by decomposing the original Air–Ground
Collaborative Planning task (Mixed).

Model Egocentric Plan. Exocentric Plan. Mixed

Qwen3-VL-8B 50.00 59.18 34.44

Qwen3-VL-32B 60.20 65.31 36.67

Qwen2.5-VL-72B 56.12 58.16 30.00

InternVL3.5-8B 46.94 52.41 30.00

InternVL3.5-38B 44.90 47.96 38.89

InternVL3-78B 54.08 51.02 28.89

MiMo-VL-7B-RL 54.08 60.20 26.67

does not surpass the best single-view result. The ∆ column
clearly indicates that, in both the Aerial–Ground and Aerial
Multi-View settings, multi-view accuracy is frequently lower
than that of the strongest single view—revealing a distinct
“1 + 1 < 2” effect. Only a few models (e.g., Qwen2.5-
VL-7B and Qwen2.5-VL-72B in the aerial multi-view case)
achieve positive gains, while the majority show negative or
marginal improvements. These findings demonstrate that
current MLLMs lack effective view fusion and fail to com-
bine complementary perspectives into stronger predictions.

4.6. Difficulty in Egocentric Planning
The Air–Ground Collaborative Planning task requires UAVs
to simultaneously plan for ground agents and for their own
self-motion. To better examine model behavior, we decom-
pose this task into two subcomponents: exocentric planning,
which focuses on predicting or planning for ground objects
or other agents, and egocentric planning, which concerns
the UAV’s own goal-directed decision-making. As shown
in Table 4, models consistently perform better on exocentric
than on egocentric planning, indicating that they are more
adept at interpreting external scene dynamics than reason-
ing about their own actions. Moreover, performance in the

Person A

Q : How should the drone move next when you are an observer in routine?

GT :

MLLM :

Increase altitude and 
move right  <to keep the 
target centered in view>

Maintain altitude and hover 
<wrong focus> 

B. To teach the red-cloth 
player how to dribble 
past.

GT : MLLM : A. To defend and stop the red 
player from moving or shooting.
<misunderstand key event> 

Event Semantics Error

Role Attribution Error

Spatial Reasoning Error

A

CB

A

CB

Q : Where are the viewpoints of  View 2 and View 3 located relative to View 1?

GT : MLLM :

1 2 3

1 11 13 148

…

event1: the man is teaching the skill event2: the boy is practicing dribbling

Q : Why is the blue-shirted player standing in front of the red-shirted player ?

Figure 6. Qualitative failure analysis of MLLMs on MM-
UAVBENCH.

Mixed setting, where both self- and other-centric cues must
be integrated, is substantially lower across all models, re-
vealing significant difficulty in combining these two forms
of reasoning. These results highlight a fundamental gap in
current MLLMs that they struggle to ground predictions in
their own embodiment and to generate coherent plans.

4.7. Other Error Analysis
We further perform qualitative analysis and identify three
additional types of failures beyond the earlier quantitative
findings, as illustrated in Figure 6:
• Event Semantics Error. MLLMs fail to correctly in-

terpret the core semantics of an event—such as who is
teaching, practicing, attacking, or defending. Misjudging
these key actions leads to incorrect understanding of the
event dynamics and flawed subsequent reasoning.

• Spatial Reasoning Error. MLLMs misinterpret the spa-
tial correspondence between 2D schematic layouts and
3D real-world configurations, resulting in incorrect judg-
ments about UAV viewpoints, relative positions, and cov-
erage relationships across multiple views.

• Role Attribution Error. MLLMs incorrectly assign se-
mantic roles to the entities involved in the scene—for



example, confusing the person who should be tracked
or misidentifying who serves as the primary actor. Such
role attribution mistakes lead to incorrect predictions and
misguided UAV planning decisions.

5. Conclusions

In this work, we introduce MM-UAVBENCH, a comprehen-
sive benchmark designed to evaluate the perception, cogni-
tion, and planning capabilities of multimodal large language
models in low-altitude UAV scenarios. MM-UAVBENCH
offers a diverse, high-fidelity, and domain-tailored testbed
for assessing MLLM performance. Through extensive eval-
uations and detailed analyses, we show that while current
MLLMs exhibit promising general capabilities, they struggle
with UAV-specific challenges such as object-scale variation,
spatial perception bias, multi-view understanding, and ego-
centric planning. These findings highlight a clear gap be-
tween generic multimodal intelligence and the requirements
of realistic UAV operations. We hope that MM-UAVBENCH
will inspire future research toward more capable, reliable,
and UAV-oriented MLLMs for real-world deployment.
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MM-UAVBENCH: How Well Do Multimodal Large Language Models
See, Think, and Plan in Low-Altitude UAV Scenarios?

Supplementary Material

6. Appendix Outline
In the supplementary materials, we provide additional details,
results, and visualizations to complement the main paper:
• MM-UAVBENCH Details. Including L3 sub-task defini-

tions, task templates for annotation, and other annotation
details.

• Evaluation Details. Including full experimental setup,
evaluation prompts, and post-processing after evaluation.

• Extended Results and Analysis. Including results on
L2 category, results with CoT, more analysis on spatial
prediction bias.

• Visualizations and Challenging Cases. Including chal-
lenging examples from each MM-UAVBENCH task and
the corresponding MLLM responses.

7. MM-UAVBENCH Details
7.1. Definition of Each Task
The hierarchical categories and definition of each task are
shown in Table 5. This taxonomy provides a comprehensive
coverage of UAV-related MLLM capabilities, ranging from
basic perception and scene understanding to complex event
reasoning and collaborative planning.

7.2. Annotation Details
MM-UAVBENCH consists of 82% manually annotated
tasks, while the remaining 18% are automatically converted
from publicly available dataset.

For manually annotated tasks, annotators are divided into
three groups according to the L1 task categories. Each group
is provided with a customized task template. After under-
standing the corresponding atomic task, annotators select
suitable data instances from the collected datasets and start
the annotation process. The prototypes of each task and their
associated data sources are summarized in Table 6.

The tasks derived from publicly datasets are Class-
agnostic Counting, Referring Expression Counting, and
Scene Damage Assessment. For counting tasks, we con-
vert raw count annotations into multiple-choice questions by
generating distractors with controlled deviations determined
by the difficulty setting (e.g., if the ground truth c ∈ [20, 50],
distractors are generated as c± 0.15c, c± 0.3c. ). We then
randomize the placement of the correct answer to avoid posi-
tional bias, ensuring that all options remain plausible while
preserving fine-grained difficulty control. For Scene Dam-
age Assessment, we first established a quantitative metric by
aggregating and weighting semantic damage descriptions

from original annotations to derive a numerical damage
score for each image. This score is mapped to four dis-
tinct severity levels (’No Damage’, ’Minor Damage’, ’Major
Damage’, and ’Total Destruction’). The task is divided into
two sub-challenges: single-image assessment, where the
model predicts the damage level of an individual image, and
comparative ranking, where the model ranks the severity of
damage across a set of three images.

8. Evaluation Details.

We evaluate all models using VLMEvalKit[7]. Our bench-
mark includes three input modalities: single image, key
frames, and videos. For video-based tasks, the original
videos are sampled at 3.0 fps. The evaluation prompt is
provided below:

Evaluation Prompt

You are an expert in the field of drones. Please
answer the following questions based on your
professional knowledge.

For images or key frames input:
You have been provided with several images and a
multiple-choice question related to the image.

For video input:
You have been provided with {len(frames)} separate
frames uniformly sampled from a video and a
multiple-choice question related to the video. The
frames are provided in chronological order of the
video.

Your task is to carefully analyze the input data to
answer the question, choosing from the options
provided. Respond with only the letter of the correct
option.

Question: {Question}
Options: {Options}

Please select the correct answer from the options
above.

We further use ‘exact matching’ policy to extract re-
sponse from the generated outputs. For efficiency in
evaluating baseline models, we utilized vLLM[13] to ac-



Table 5. Task taxonomy of MM-UAVBENCH, including hierarchical categories, definitions, and examples.

L1 Category L2 Category L3 Sub-task Task Definition Example

Perception

Classification
Scene Classifica-
tion

Capture and categorize scenes from the entire im-
age or selected areas.

Observe the image. What is the primary type of
scene within the red box area?

Orientation Clas-
sification

Identify the ongoing turning behavior of vehi-
cles/people.

Based on visible cues, what is the immediate mo-
tion direction of the white SUV within the red box
area relative to its own orientation?

Environment
State Classifica-
tion

Identify the lighting and weather conditions of the
scene in the image.

What are the lighting and weather conditions in
this image?

OCR Urban OCR Recognize the text within the specified bounding
box in the image.

What is the exact text on the warning sign at the
extreme angle?

Counting Class-agnostic
Counting

Count the objects of the specified category in the
image.

Please count the number of the objects in the im-
age that belong to the category: sheep

Referring Expres-
sion Counting

Count the objects that meet the specific descrip-
tions in the image.

Please count the number of the objects or people
that match the description: The white vehicles
waiting at the traffic light.

Cognition

Object-Level
Reasoning

Target Backtrack-
ing

Trace back the spatial positions and behaviors of
the target in the past spatiotemporal sequence.

What did the car do before reaching this point?

Cross-Object Rea-
soning

Analyze the behavioral relationships or spatial
connections among multiple subjects at the cur-
rent moment.

Can another car be parked between these two
cars?

Intent Analysis
and Prediction

Predict the target’s future spatial positions and
behaviors based on its current spatial position and
behavior.

How will the car in the bounding box travel at
the T-junction based on ground and aerial perspec-
tives?

Scene-Level
Reasoning

Scene Attribute
Understanding

Analyze the attributes or functions of the entire
image or the selected region.

How can you describe this scene, Modern or retro?

Scene Damage
Assessment

Analyze the damage degree of the scene/Compare
the damage degrees of multiple scenes.

How to rank the severity of building damage
across the three scenes (from mild to severe)?

Scene Analysis
and Prediction

Predict the future change trends based on the
changes occurring within the scene over a period
of time.

Predict the most likely changes in traffic flow
within the scene.

Event-Level
Reasoning

Event Tracing Analyze the causes of the event’s occurrence. What led to the black cars closely follow white
cars shown in the video?

Event Under-
standing

Understand the events that are occurring in the
video.

What specific harvesting operation is depicted in
the aerial view of the cornfield?

Event Prediction Predict the future development trend of the events
in the video.

How will the conflict situation shown in the video
develop?

Temporal Order-
ing

Analyze the chronological order of multiple key
frames in a video.

In which order should these images be arranged
to match the actual progression of the event?

Planning
UAV-to-UAV
Planning

Swarm Collabora-
tive Planning

Based on the information provided by multiple
drones from different perspectives, select the opti-
mal drone task allocation strategy.

There are three drones providing main, secondary,
and third-perspective views. The drone offering
the third perspective has withdrawn due to low
battery. To maintain the original tracking plan, de-
termine whether a new drone should be deployed
and where it should be added.

UAV-to-
Ground
Planning

Ground-Target
Planning

The ground target needs to complete a specific
task; provide a reasonable action plan or route.

If rescuers need to rescue the injured at ABCDE’s
point after the earthquake and take the wounded
to the Region ⟨A⟩ for evacuation, please plan the
most suitable rescue route.

Air-Ground
Collaborative
Planning

Provide a reasonable action plan or route for the
ground target and drones to jointly complete a
specific task.

A religious activity is in progress. Based on the
information boxed in the picture, to ensure that
Vehicle B can move forward smoothly, what ac-
tions should Vehicle A and the drone take?

celerate inference for models based on the Qwen archi-
tecture, while other models were run using the standard
Hugging Face transformers library[36]. To ensure repro-
ducibility, we strictly set the generation configuration with
temperature = 0.0 and top p = 1.0. Furthermore,
where supported by the model, we optionally employed
num beams = 3 for generation.

9. Extended Results and Analysis.

Here we provide more evaluation results and analysis on
MM-UAVBENCH, including L2 category results, results of
models with Chain-of-Thought(CoT), and more analysis on
spatial prediction bias.



Table 6. Task templates and annotation data sources used for each L3 sub-task.

L3 Sub-task Task Template Data Source
Scene Classification Given an image or a selected region within the image, what category does

the corresponding scene belong to?
Visdrone-DET[46]

Orientation Classifi-
cation

Given an image and the selected object, what is its current turning intention
based on its own movement direction?

Visdrone-DET[46]

Environment State
Classification

Given an image, what are the lighting and climate conditions of it? Visdrone-DET[46],
Visdrone-VID[46],
ERA[23], AIDER[14],
MDOT[44]

Urban OCR Given an image, recognize the text within the selected region. Visdrone-DET[46]
Class-agnostic
Counting

Count the number of the specified type of object in a given image. Animaldrone[45],
Cattle-det[26], MTC-
plant[20]

Referring Expres-
sion Counting

Count the number of objects that match the referring expression in a given
image.

Refdrone[28],
Rec8k[4], Visdrone-
DET[46]

Target Backtracking Given multiple key frames in a video, what are the [spatial position] or [be-
havior] of the target object or person in the [past spatiotemporal sequence]?

Visdrone-VID[46],
Visdrone-SOT[46]

Cross-Object Rea-
soning

Given an image and multiple target objects or people, what are the [behav-
ioral relationship] or [spatial relationship] between them?

Visdrone-DET[46]

Intent Analysis and
Prediction

Given multiple frames in a video and a target object or person, based on its
[spatial position and behavior] [from the past to the present], what will its
[future] [spatial position and behavior] be?

Mavrec[8], MDOT[44]

Scene Attribute Un-
derstanding

Given an image or a selected region within the image, does it conform to a
certain [description]? / what is its [function]?

Visdrone-DET[46]

Scene Damage As-
sessment

Given an image, how severe is the [disaster level] of the scene it shows? /
Given multiple images, sort them by the severity of their disaster levels.

RescueNet[25]

Scene Analysis and
Prediction

Given multiple frames in a video, based on the changes the scene has under-
gone [from the past to the present]. What its [future change trend] be?

UAVid[21], AU-AIR[2]

Event Tracing Given multiple frames in a video, analyze the [causes of the event] happened
in the [past spatiotemporal sequence]?

ERA[23]

Event Understand-
ing

Given multiple frames in a video, understand the [event] that is [currently]
happening.

ERA[23]

Event Prediction Given multiple frames in a video, based on the [event] happened [from the
past to the present], predict the [future evolution] of the event.

ERA[23]

Temporal Ordering Given multiple [shuffled frames] of a video, based on the [stages of events]
in different frames, what is the [correct chronological order] of the frames

ERA[23]

Swarm Collabora-
tive Planning

Given multiple images from [multiple drone perspectives], select the per-
spective with the most comprehensive information as the main perspective
and mark [multiple candidate regions in the main perspective]. Under a
specific requirement, which region should [be prioritized for allocation]? / If
the drone corresponding to the perspective of a certain image is [damaged],
which region needs to have [a new drone added]?

MDOT[44]

Ground-Target Plan-
ning

Given an image of a [disaster-affected scene] and [multiple marked rescue
points], what is the [most suitable rescue route] and plan considering both
rescue [priority] and rescue [time]?

AIDER[14]

Air-Ground Collab-
orative Planning

Given multiple frames in a video, assuming [a task] needs to be performed,
what actions should the [ground targets] and [UAVs] take respectively based
on the current state?

ERA[23]



Table 7. Averaged zero-shot evaluation results on MM-
UAVBENCH on L2 Category.
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API-based

Gemini 2.5 Pro 62.19 82.19 24.40 50.05 61.89 66.62 25.68 46.38

Gemini 2.5 Flash 60.00 75.94 28.71 37.62 57.27 56.44 15.54 30.07

GPT-4o 54.59 62.19 20.49 30.00 51.74 57.18 28.38 42.14

Open-source

Qwen3-VL-8B 56.05 79.69 28.68 55.25 57.57 53.11 27.12 42.76

Qwen3-VL-32B 61.88 76.56 36.01 48.90 63.87 61.96 37.63 47.19

Qwen3-VL-235B-A22B 61.99 73.44 36.64 48.97 58.09 62.84 33.45 48.85

Qwen2.5-VL-7B 55.82 70.31 28.86 49.34 56.22 51.97 27.12 45.42

Qwen2.5-VL-32B 55.15 76.56 36.01 45.69 64.69 56.59 23.73 48.62

Qwen2.5-VL-72B 58.94 75.62 29.87 48.82 59.85 66.21 35.25 49.16

InternVL3.5-8B 52.61 68.12 27.04 40.12 57.02 51.34 40.68 38.34

InternVL3.5-38B 41.38 66.56 33.69 33.43 46.61 56.31 32.54 32.23

InternVL3-14B 52.33 73.75 24.36 43.12 61.53 51.58 29.49 35.44

InternVL3-78B 63.96 58.44 30.73 45.59 65.43 63.38 38.64 40.40

LLaVA-OneVision-7B 50.21 65.94 24.72 37.26 38.40 51.09 27.46 44.00

MiniCPM-V-4.5-8B 57.17 72.50 32.96 43.66 43.14 52.56 39.32 43.03

MiMo-VL-7B-RL 53.49 70.62 24.20 41.28 55.89 39.19 23.73 45.38

9.1. Results on L2 Category
Table 7 presents the zero-shot evaluation results of 16 general
MLLMs across the L2 categories, which directly reveals
specific capability deficiencies required for UAV scenarios.
We can summarize limitations of MLLMs across three core
dimensions:

• Weakness in fine-grained quantitative perception. In
the Perception dimension, performance on Counting (∼
20 − 36%) is significantly lower than Classification and
OCR (∼ 50 − 80%). This disparity underscores a se-
vere bottleneck where MLLMs struggle with fine-grained
enumeration and density estimation in aerial imagery.

• Object-level reasoning is more challenging. The Cog-
nition dimension reveals that object-level reasoning is no-
tably weaker than both scene-level and event-level rea-
soning. This decline is possibly correlated with the small
target scale and limited context. Fig. 4 also shows that Tar-
get Backtracking (an object-level reasoning task) improves
with increasing target size.

• Handling multi-view images increases the difficulty of
planning. MLLMs perform substantially worse on UAV-
to-UAV collaborative tasks (multi-view input) than on
UAV-to-Ground tasks (single-view input) in the Planning
dimension. This strongly indicates MLLMs’ fundamental
limitation in processing and integrating information from
disparate multi-view inputs, which is critical for complex
swarm planning.

9.2. Evaluation with CoT
The performance gap between models with and without
Chain-of-Thought (CoT) prompting is shown in Table 8.
Overall, employing CoT significantly improves the aver-
age performance of both models (Qwen3-VL-8B:∆+ 2.55;
MiMo-VL-7B-RL:∆+ 5.55). Across individual tasks, the
gains are highly variable. CoT largely improves the perfor-
mance in the perceptional tasks like Orientation Classifica-
tion, Class-agnostic Counting, and most Event-Level tasks in
cognition. Conversely, CoT does not perform well in Object-
Level Reasoning tasks (e.g., Qwen3-VL-8B: ∆ − 14.54),
suggesting that the explicit intermediate steps may introduce
errors when the initial perception or localization of the target
is inherently difficult.

9.3. Analysis on Spatial Prediction Bias
As shown in Fig. 7, we present the confusion matrices of
other baseline models for the Orientation Classification task.
Both API-based and open-source MLLMs exhibit spatial
prediction biases. Specifically, models demonstrate a strong
conservative bias, frequently misclassifying turning motions
(‘T. right’, ‘T. left’) as the ‘P. stat.’ (predicted stationary) or
‘T. strai.’ (predicted straight) categories. This indicates that
MLLMs struggle to accurately resolve subtle directional cues
in aerial imagery, leading to confusion between rotational
and static/forward movement intentions.

10. Visualizations and Challenging Cases
In this section, we present additional examples from MM-
UAVBENCH along with the responses of baseline models.
Representative cases for the Perception dimension are shown
in Fig. 8 and Fig. 9, for the Cognition dimension in Fig. 10,
Fig. 11, Fig. 12, Fig. 13 and Fig. 14, for the Planning dimen-
sion in Fig. 15 and Fig. 16.



Table 8. Evaluation with CoT on L3 sub-tasks. “Qwen3-VL-8B-Thinking” and “MiMo-VL-7B-RL-Thinking” denote the original models
augmented with CoT. ∆ represents the performance difference (CoT-augmented minus original) for each sub-task.
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Qwen3-VL-8B 50.98 69.87 26.52 71.76 79.69 38.79 18.57 50.00 57.56 58.18 85.56 34.00 53.14 58.44 62.46 61.54 30.00 33.11 45.61 39.90

Qwen3-VL-8B-Thinking 53.54 69.46 45.20 71.47 72.50 47.88 24.56 40.17 43.02 52.68 84.06 41.33 66.67 63.79 65.78 65.59 39.47 36.21 46.31 41.06

∆ +2.55 -0.41 +18.68 -0.29 -7.19 +9.09 +5.99 -9.83 -14.54 -5.50 -1.50 +7.33 +13.53 +5.35 +3.32 +4.05 +9.47 +3.10 +0.70 +1.16

Mimo-VL-7B-RL 44.67 67.36 24.22 68.88 70.63 16.97 31.43 43.22 32.56 48.06 84.48 29.14 54.11 40.74 39.20 36.84 40.00 30.08 48.44 42.31

Mimo-VL-7B-RL-Thinking 50.22 67.36 35.05 69.74 70.31 25.15 32.27 31.62 49.42 47.05 86.28 35.82 53.47 64.73 63.33 54.29 36.98 41.02 45.58 44.66

∆ +5.55 -0.00 +10.83 +0.86 -0.32 +8.18 +0.84 -11.60 +16.86 -1.01 +1.80 +6.68 -0.64 +23.99 +24.13 +17.45 -3.02 +10.94 -2.86 +2.35
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Figure 7. More confusion matrices of other baseline models on the Orientation Classification task.



Q:What is the primary type of scene within the 
red box area?

Scene Classification

A: Shopping mall
B: Hotel
C: Hospital
D: Bank

Q:What is the primary type of scene within the 
red box area?
A: Pond     B: River 
C: Sea        D: Lake

Q:What is the primary type of scene within the 
red box area？

A: School
B: Residential buildings
C: Hospital   
D: Department store building

Gemini 2.5 Flash: D
GPT-4o: A
Qwen3-VL-235B-A22B: A
Gemini 2.5 Pro: D
Qwen2.5-VL-72B: A

Gemini 2.5 Flash: D
GPT-4o: A
Qwen3-VL-235B-A22B: B

Qwen3-VL-32B: D
InternVL3.5-38B: D
InternVL3-78B: D
LLaVA-OneVision-7B: A
MiniCPM-V-4.5_8B: A

Gemini 2.5 Flash: A
GPT-4o: B
Qwen3-VL-235B-A22B: B

Q:Based on visible cues, what is the immediate 
motion direction of the white SUV within the red 
box area relative to its own orientation?

Orientation Classification

A: Moving straight
B: Turning right
C: Turning left
D: Stationary (no 
movement)

Q:Based on visible cues, what is the immediate 
motion direction of the white car within the red 
box area relative to its own orientation?
A: Moving straight   B: Turning left
C: Turning right       D: Stationary

Q:Based on visible cues, what is the immediate 
motion direction of the white car within the red 
box area relative to its own orientation?

A: Moving straight
B: Turning left
C: Turning right 
D: Stationary (no movement)

Gemini 2.5 Flash: A
GPT-4o: C
Qwen3-VL-235B-A22B: C
Gemini 2.5 Pro: C
Qwen2.5-VL-72B: A

Gemini 2.5 Flash: A
GPT-4o: D
Qwen3-VL-235B-A22B: B

Qwen3-VL-32B: C
InternVL3.5-38B: C
InternVL3-78B: D
LLaVA-OneVision-7B: C
MiniCPM-V-4.5_8B: C

Gemini 2.5 Flash: A
GPT-4o: B
Qwen3-VL-235B-A22B: A

Figure 8. Additional Examples of Sub-Tasks (Part 1).



Q:What are the lighting and weather conditions 
in this image?

Environment State Classification

A: daytime and cloudy
B: nighttime and foggy
C: daytime and snowy
D: daytime and sunny

Q:What are the lighting and weather conditions in 
this image?

A: dusk and clear
B: dusk and foggy
C: daytime and clear
D: daytime and cloudy

Q:What are the lighting and weather conditions in 
this image?

A: daytime and rainy
B: dusk and cloudy
C: nighttime and clear
D: dusk and clear

Gemini 2.5 Flash: A
GPT-4o: A
Qwen3-VL-235B-A22B: A
Gemini 2.5 Pro: A
Qwen2.5-VL-72B: A

Gemini 2.5 Flash: D
GPT-4o: C
Qwen3-VL-235B-A22B: C

Qwen3-VL-32B: A
InternVL3.5-38B: A
InternVL3-78B: A
LLaVA-OneVision-7B: A
MiniCPM-V-4.5_8B: A

Gemini 2.5 Flash: D
GPT-4o: D
Qwen3-VL-235B-A22B: D

Q:What is the exact text on the billboard?

Urban OCR

A: 中联农仙
B: 中联衣业
C: 中辰农业
D: 中联农先

Q:How many seconds are left on the red straight-
going light in the image?

A: 30 seconds
B: 39 seconds
C: 34 seconds
D: 38 seconds

Q:What is the exact text on the illuminated 
signboard? 

A: 華國佳苑
B: 节日快乐
C: 華国住苑
D: 華国佳院

Gemini 2.5 Flash: B
GPT-4o: A
Qwen3-VL-235B-A22B: A
Gemini 2.5 Pro: C
Qwen2.5-VL-72B: A

Gemini 2.5 Flash: C
GPT-4o: C
Qwen3-VL-235B-A22B: C

Qwen3-VL-32B: D
InternVL3.5-38B: A
InternVL3-78B: C
LLaVA-OneVision-7B: D
MiniCPM-V-4.5_8B: A

Gemini 2.5 Flash: A
GPT-4o: A
Qwen3-VL-235B-A22B: A

Figure 9. Additional Examples of Sub-Tasks (Part 2).



Q:Was the car within the red box area in
motion before this moment?

Target Backtracking

A: Yes
B: No
C: Insufficient visual cues
D: Unrelated to the visual cues

Q:Did the vehicle in the box turn at a right angle
from the left intersection to the current position?
A: Yes
B: No
C: Insufficient visual cues
D: Unrelated to the visual cues

Gemini 2.5 Flash: /
GPT-4o: B
Qwen3-VL-235B-A22B: D
Gemini 2.5 Pro: D
Qwen2.5-VL-72B: B
Qwen3-VL-32B: B
InternVL3.5-38B: B
InternVL3-78B: B
LLaVA-OneVision-7B: D
MiniCPM-V-4.5_8B: C

Gemini 2.5 Flash: C
GPT-4o: C
Qwen3-VL-235B-A22B: C
Gemini 2.5 Pro: A
Qwen2.5-VL-72B: C
Qwen3-VL-32B: C
InternVL3.5-38B: A
InternVL3-78B: A
LLaVA-OneVision-7B: B
MiniCPM-V-4.5_8B: C

Q:What are the two people within the red box
area doing in the picture?

Cross-Object Reasoning

A: walk side by side
B: pursue
C: roll about
D: jump

Q:Can a car park in the gap between these two
cars?
A: Yes
B: No
C: Insufficient visual cues
D: Unrelated to the visual cues

Gemini 2.5 Flash: A
GPT-4o: B
Qwen3-VL-235B-A22B: A
Gemini 2.5 Pro: A
Qwen2.5-VL-72B: A

Qwen3-VL-32B: A
InternVL3.5-38B: B
InternVL3-78B: A
LLaVA-OneVision-7B: C
MiniCPM-V-4.5_8B: A

Gemini 2.5 Flash: /
GPT-4o: B
Qwen3-VL-235B-A22B: C
Gemini 2.5 Pro: B
Qwen2.5-VL-72B: B

Qwen3-VL-32B: B
InternVL3.5-38B: A
InternVL3-78B: B
LLaVA-OneVision-7B: B
MiniCPM-V-4.5_8B: B
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Figure 10. Additional Examples of Sub-Tasks (Part 3).



Q:Based on the two aerial views, where will the
car within the red box go to at the intersection ?

Intent Analysis and Prediction

A: Probably turn around and enter the opposite lane
B: Probably go straight or turn left to enter the branch road
C: Probably go straight or turn right to enter the branch road
D: Probably go straight along the current lane

Q:Based on the two aerial views, where will
pedestrians inside the red box walk next?

A: Probably go straight or turn right at the branch road
B: Probably turn around and walk back
C: Probably go straight or turn left at the branch road
D: Probably stop and stay in place

Gemini 2.5 Flash: /
GPT-4o: C
Qwen3-VL-235B-A22B: B
Gemini 2.5 Pro: C
Qwen2.5-VL-72B: B

Qwen3-VL-32B: C
InternVL3.5-38B: D
InternVL3-78B: B
LLaVA-OneVision-7B: C
MiniCPM-V-4.5_8B: C

Gemini 2.5 Flash: /
GPT-4o: A
Qwen3-VL-235B-A22B: A
Gemini 2.5 Pro: C
Qwen2.5-VL-72B: C

Qwen3-VL-32B: C
InternVL3.5-38B: A
InternVL3-78B: A
LLaVA-OneVision-7B: C
MiniCPM-V-4.5_8B: C
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Figure 11. Additional Examples of Sub-Tasks (Part 4).



Q:What can vehicles do in the scene shown in
the image from the camera’s perspective?

Scene Attribute Understanding

A: Vehicles on the inside lane of a longitudinal road running from
bottom-to-top approach may turn left onto a transverse road
running from right-to-left horizontal approach.
B: Vehicles on a transverse road running from right-to-left
horizontal approach may turn right onto a longitudinal road
running from top-to-bottom approach.
C: Vehicles on the inner lane of the longitudinal road running
from top-to-bottom approach may turn right onto a transverse
road running from right-to-left horizontal approach.
D: Vehicles on a transverse road running from left-to-right
horizontal approach may remain in the intersection area.

Q:What is the function of the scene shown in
the middle of the image?
A: Used for residing and living.
B: Used for conducting commercial office work.
C: Used for conducting education and training.
D: Used for holding art exhibitions.

Gemini 2.5 Flash: /
GPT-4o: A
Qwen3-VL-235B-A22B: A
Gemini 2.5 Pro: C
Qwen2.5-VL-72B: C

Qwen3-VL-32B: C
InternVL3.5-38B: C
InternVL3-78B: C
LLaVA-OneVision-7B: D
MiniCPM-V-4.5_8B: C

Gemini 2.5 Flash: /
GPT-4o: B
Qwen3-VL-235B-A22B: C
Gemini 2.5 Pro: B
Qwen2.5-VL-72B: B

Qwen3-VL-32B: B
InternVL3.5-38B: A
InternVL3-78B: B
LLaVA-OneVision-7B: B
MiniCPM-V-4.5_8B: B

Figure 12. Additional Examples of Sub-Tasks (Part 5).



Q:For a scene-level assessment, choose the
damage classification that fits the buildings as
a whole in this image. (Base your answer on
the dominant condition of the buildings;
disregard unassigned wreckage or background
clutter.)

Scene Damage Assessment

A: No Damage
B: Minor Damage
C: Major Damage
D: Total Destruction

Q:Arrange the scenes by increasing building
damage severity (lowest→ highest).

A: Scene1-Scene3-Scene2
B: Scene2-Scene3-Scene1
C: Scene3-Scene1-Scene2
D: Scene3-Scene2-Scene1

Gemini 2.5 Flash: C
GPT-4o: A
Qwen3-VL-235B-A22B: A
Gemini 2.5 Pro: D
Qwen2.5-VL-72B: A
Qwen3-VL-32B: C
InternVL3.5-38B: D
InternVL3-78B: C
LLaVA-OneVision-7B: D
MiniCPM-V-4.5_8B: C

Gemini 2.5 Flash: C
GPT-4o: D
Qwen3-VL-235B-A22B: D
Gemini 2.5 Pro: D
Qwen2.5-VL-72B: B

Qwen3-VL-32B: D
InternVL3.5-38B: C
InternVL3-78B: C
LLaVA-OneVision-7B: D
MiniCPM-V-4.5_8B: C

Q:Predict the possible changes that may occur
in the future on both lanes.

Scene Analysis and Prediction

A: The traffic volume in the left lane will increase significantly.
B: The traffic volume in both lanes will not show any significant
changes.
C: The traffic flow in the right lane will decrease.
D: The traffic volume in both lanes will experience a significant
increase.

Q:Predict possible changes that may occur in
the scene in the future.

A: The traffic flow will remain stable.
B: The traffic flow will gradually decrease, making this roundabout
intersection more spacious.
C: The traffic flow at this roundabout intersection will increase
and decrease from time to time.
D: The traffic flow will gradually increase, which may lead to
frequent congestion at the roundabout intersections.

GPT-4o: B
Qwen3-VL-235B-A22B: D
Gemini 2.5 Pro: D
Qwen2.5-VL-72B: B
Qwen3-VL-32B: B
InternVL3.5-38B: B
InternVL3-78B: D
LLaVA-OneVision-7B: B
MiniCPM-V-4.5_8B: D

GPT-4o: C
Qwen3-VL-235B-A22B: C
Gemini 2.5 Pro: C
Qwen2.5-VL-72B: C
Qwen3-VL-32B: D
InternVL3.5-38B: C
InternVL3-78B: B
LLaVA-OneVision-7B: D
MiniCPM-V-4.5_8B: D
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Figure 13. Additional Examples of Sub-Tasks (Part 6).



Q:What is the reason for the player in red
moving left in the video?

Event Tracing

A: Prepare to receive the ball.
B: Adjust the position.
C: Prepare to pitch.
D: Dodge the incoming ball.

Q:What was the reason for those people in the
video to form a circle?
A: Because they are being filmed for a winter - themed
documentary.
B: In order to conduct a teaching activity on winter survival skills.
C: To celebrate a child's birthday, a circle birthday event is held in
the snow.
D: People are gathered in a circle to watch the performance.

Gemini 2.5 Flash: B
GPT-4o: A
Qwen3-VL-235B-A22B: B
Gemini 2.5 Pro: B
Qwen2.5-VL-72B: B
Qwen3-VL-32B: B
InternVL3.5-38B: B
InternVL3-78B: B
LLaVA-OneVision-7B: C
MiniCPM-V-4.5_8B: A

Gemini 2.5 Flash: /
GPT-4o: C
Qwen3-VL-235B-A22B: C
Gemini 2.5 Pro: C
Qwen2.5-VL-72B: C
Qwen3-VL-32B: D
InternVL3.5-38B: C
InternVL3-78B: B
LLaVA-OneVision-7B: D
MiniCPM-V-4.5_8B: D
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Figure 14. Additional Examples of Sub-Tasks (Part 7).



Q:At present, there are 3 drones, and the
shooting angle is as shown in the figure, with
the UAV in View 1 as the main command
perspective, the drones in View 2 and View 3
provide second and third perspectives. Now
you need to see the road ahead of the person
you are tracking while tracking him, so in
which area should you add a drone?

Swarm Collaborative Planning

A: Region A
B: Region B
C: Region C

Q:At present, there are three unmanned aerial
vehicles (UAVs), and the shooting angles are
shown in the figure. The UAV from the
perspective of Figure 2 is the main command
angle, while the perspectives of Figure 1 and
Figure 3 are the second and third angles,
respectively. The first perspective drone has
exited tracking due to low battery. In order to
maintain the original plan for tracking, which
area should a new drone be added in?

A: Region A
B: Region B
C: Region C

GPT-4o: C
Qwen3-VL-235B-A22B: A
Gemini 2.5 Pro: A
Qwen2.5-VL-72B: A
Qwen3-VL-32B: C
InternVL3.5-38B: B
InternVL3-78B: C
LLaVA-OneVision-7B: B
MiniCPM-V-4.5_8B: C

GPT-4o: C
Qwen3-VL-235B-A22B: C
Gemini 2.5 Pro: C
Qwen2.5-VL-72B: C
Qwen3-VL-32B: C
InternVL3.5-38B: B
InternVL3-78B: C
LLaVA-OneVision-7B: C
MiniCPM-V-4.5_8B: C

1

2

3

1

2

3

Figure 15. Additional Examples of Sub-Tasks (Part 8).



Q:Due to the heavy flood, the rescue team
needs to reach the five locations A, B, C, D and
E for rescue. Based on water depth，the
estimated number of injured or trapped
people, and other relevant factors, the rescue
priority levels at the locations are as follows:
A:High ，B:low，C: high，D: low, E: low.
Please plan the most reasonable route that
prioritizes rescue priority while also
minimizing the overall rescue time.

Ground-Target Planning

A: E→C→B→A→D
B: E→B→A→C→D
C: E→C→A→D→B
D: E→A→C→B→D

Q:After a factory collapse, rescuers should start
from point E, rescue the injured at points ABCD,
and then take the injured back to point E for
evacuation. Considering the rescue principle of
prioritizing closer and easier-to-reach victims
to avoid secondary collapses, please plan the
most suitable rescue route.
A: E→A→B→C→D
Logic: Straight from E to A, along roof residual structure to B,
through core to C, finish D.
B: E→D→C→B→A
Logic: Reverse from E to D, clear C and then back to B and A.
C: E→C→A→B→D
Logic: E→C to keep "next to the intact roof", C→A through the
core, A→B to clear the residue, B→D along the edge.
D: E→B→A→D→C
Logic: E→B borrows the "residual frame", B→A follows the gentle
slope of the collapse, A→D clears the edges, D→C completes, and
C returns directly to point E and leaves

Gemini 2.5 Flash: /
GPT-4o: C
Qwen3-VL-235B-A22B: C
Gemini 2.5 Pro: C
Qwen2.5-VL-72B: D
Qwen3-VL-32B: C
InternVL3.5-38B: /
InternVL3-78B: D
LLaVA-OneVision-7B: C
MiniCPM-V-4.5_8B: C

Gemini 2.5 Flash: /
GPT-4o: D
Qwen3-VL-235B-A22B: A
Gemini 2.5 Pro: C
Qwen2.5-VL-72B: C
Qwen3-VL-32B: A
InternVL3.5-38B: C
InternVL3-78B: A
LLaVA-OneVision-7B: C
MiniCPM-V-4.5_8B: D

Figure 16. Additional Examples of Sub-Tasks (Part 9).
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